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The problem of optimum control for the process of metal heating is
formulated so as to achieve minimum decarbonization. The calcula-~
tional formulas are presented for the local numerical method of an
approximate solution for the problem.

The problem of selecting the temperature regime
for a furnace so as to ensure the heating of a blank to
the required specifications with minimum decarboniza-
tion of the surface can be rigorously formulated within
the terms of the theory of optimum control of systems
with distributed parameters [1]. Problems of this type
were initially associated with minimizing the amount
of scale during heating; solutions were formulated in
[2] on the assumption that the process under considera-
tion is described by a system of 2-nd- or 3-rd-order
ordinary differential equations.

An attempt is made below to approach the solution
of the optimum problem when the controlled object is
essentially described by nonlinear heat-conduction
equations and the corresponding equation of diffusion
for carbon [3]. For the case of the heating of plates,
we derive the calculation formulas for the local num-
erical method proposed in [4] for the solution of the
problem.

Let the equations for the heating [5] of a plate have
the form
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and at the instant at which the heating process T is
concluded we have to have the specified mean square
deviation from the plate distribution Q*(x) required
from the standpoint of the equipment, i.e., the follow-
ing relationship must be satisfied:
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The control function u(t) is subject to the limitation
05u@) <. (5)

Let us describe the decarbonization process for
the surface [6] with the equations
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where D(QS) is the coefficient of carbon diffusion de-
termined, for example, from the empirical Welles and
Mell formula [6] ’
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and we will evaluate the thickness of the decarbonized
layer at the instant T by means of the functional

1
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Obviously, Iy = 0 when there is no decarbonization.

Let us solve the following optimum problem: for
system (1)—(3), (6)—(7), select the control function
u(t), 0 = t =< T (the time T is fixed), constrained by
condition (5) and such that the functional I, given by
formula (8*), assumes its minimum possible value,
while the functional I;, given by formula (4), assumes
the specified value at the instant t = T. The solution
of the formulated problem is attained by the method
of successive approximations, based on the construc-
tion of a transition from the control function uk(t)
(achieved at the k-th iteration) to the function uk+1(t)
near to it, such that the value of [y diminishes, i.e.,
Io(uk(t)) > I,(uk*1(t)), while the value of I; remains
constant to some degree of accuracy. To construct
such a process let us determine the relationship be-
tween the variations of the functionals 6I; and 6I; and
the small variation in the control du(t). Using the re-
sults from perturbation theory [7], and carrying out
the appropriate calculations, we derive formulas for
this relationship in the form
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Here '171‘0(1:) satisfies the following system of equations:
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In relationship (15) ¥(x,t) is determined from the solu~-
tion of system (10)—(11).
The function (t) satisfies the equations
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By means of formulas (8) and (9) we construct the
process of successive approximations according to the
usual scheme [4].

Let us divide the time axis into N parts with the
poinis 0 = fy = t; = ... = tjy =T and we will deal only
with the piecewise-constant controls of the form

w(f) = u, where t€[f, 1, 4] (20)

We will replace formulas (8) and (9) by finite-differ-
ence relationships of the form
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where k is the iteration number; the numbers Zpon and
z/Jm (n=1,2,...,N) are partial derivatives of the func-
tionals Ij and 11 with respect to the variables 6ulr§ The
variation of 6un (n=1,2,...,N) is achieved by solving
the following hnear-prog'ramming problem.

Find N numbers du; minimizing the linear formula
(21) and satisfying the following limitations:

§1% = V Yt S uk =0, (23)
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0<ut+8ut < 1, |6ukl <et>0, {24)
n=1,2 ... N

The methods for the solution of such problems have
now been well developed [8].

Finally, the scheme for the method of successive
approximations is the following,

Let the control function u¥(t) derived on the k-th
iteration be specified. For the determination of ak*i(g)
the following calculatlons are carried out,

1. The function uk(t) is substituted into (3), and
(1)—(8) and (6)~(7) are integrated by one of the numer-
ical methods. From (4)—(8) we calculate the values of
1E and 1K

2. The functions Qkx,b), ckx,t), R¥t), 0= t=T,
0 = x = 1 thus derived are substituted into (10)—~(15)
and (16)—(19), and these are then integrated in reverse
order (the initial conditions in these equations are
specified, as usual [4], at the instant t = T) as follows:
initially system (10)—{11), then the derived function
W(x,t) is substituted into (15) and system (12)-(15) is
integrated. Following this, system (16)—(19) is inte~

grated.
3. We use formulas (21) and (22) to calculate the
numbers d’on and %kn (n=1,2,...,N).

4, We select the magmtude of Ek, and the varia-
tions in the control éuﬁ {n=1,2,...,N)aredetermined
by solution of the linear-programming problem.

5. The improved control is determined by the for-
mula

Wt =yt L8yt n=1, 2, .., N. (25)

Since formulas (8)—(9) and {21)—(22) are valid only
when the first approxnnatlon is applicable {given suffi-
ciently small du(t) and 6un) the correct selection of
eX at each iteration is a basic prerequisite for success~
ful optimization. We can control the validity of the
selection of & by comparing the "true” {derived by
iteration) increments of the functionals

AL =1 AL =1 I

and the increments 61y and 61, predicted on the basis
of (21) and (22),

Remarks: 1) The storage capacity of a digital com~
puter is governed by the condition that at each itera-
tion it is necessary to store the distributions Q(x,t},
R(t), C{x,t), 0=x=1, 0=t=T at a sufficient num~
ber of points. In the linear case—when A and £ are con~
stants—we need only the functions Qg(t}, R(t), and
C(x,t) for the solution of systems (10)—(15) and (16)—
(19).

2) We should note that system (6)—(7) for carbon is
integrated essentially in the narrow layer adjacent to
the surface for 0 = x = xp, where x; < 1.

3) With limitations on such phase variables of the
system as furnace temperature, plate surface, etc.,
we should proceed as recommended in [4].

4) The method is convenient for the compilation of
standard programs to soive problems of this kind. In
this case, the solutions of the analysis problem avail~
able because of the existence of a program (integration
of system (1)=(38), (6) and (7} for a specified control
function) make up a component part of the over-all al-
gorithm scheme. Solutions of systems such as (10)~—
(15) and (16)—(19), as a rule, present no significant
difficulties in view of their linearity.

5) Derivation of formulas such as (8) and (9} is pos-
sible for bodies of other shapes (cylinders, prisms)
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and for another form of Eq. (8) whichdescribes the fur-
nace inertia. This equation, generally speaking, can
be replaced by a nonlinear system of ordinary differ-
ential equations with specified initial conditions at the
instant t = 0.

6) The problem of optimum control with other opti-~
mality criteria can be solved in similar fashion. For
example, the problem of the fastest heating of a blank
to a specified condition with a specified value for the
magnitude of decarbonization at the end of the process,
ete.

7) The mathematical model for the process of car-
bon diffusion in the surface layer of a metal can be
changed by consideration of a boundary condition of the
3rd kind instead of condition (7}, and also by introduc-
ing a second control function, i.e., the time-varying
carbon potential of the atmosphere. This is essential,
for example, in problems of carbonization.

In conclusion, let us take note that numerous im-
portant industrial processes (drying, carbonization of
metal surfaces in special atmospheres, metal oxida-
tion [9], etc.) have mathematical models similar o
those considered above, and the problems of choosing
the optimum production regime for these processes
can be resolved on the basis of the methodology pre-
sented here. In this article we have not dealt with prob-
lems pertaining to the convergence of the method of
successive approximations, nor is the rate of its con-
vergence evaluated.

In [10], using specific numerical calculations, we
have demonstrated the effectiveness of applying an
analogous method of successive approximations to
problems of optimum control in the heating of massive
bodies, said method formulated in reference [5]. This
circumstance may serve as a basis for the application
of this method to the solution of problems similar to
those treated above.

NOTATION

Q(x,t) is the temperature distribution in a plate;
Qg(t) is the temperature of the body surface; R(t) is
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the temperature of the furnace; u(t) is the thermal
power of the furnace; Qy(x) and R are the initial tem-
peratures of the body and furnace; t is the time; x is
the coordinate; T is the total heating time; AMQ) is the
thermal conductivity of the material; ¢(Q) and y(Q) are
the heat capacity and density of the material; « and v
are the constants characterizing heat transfer in the
"furnace-heated g body " system; C(x,t) is the concen-
tration of carbon at some distance from surface with
given t, %; C, is the initial carbon content in steel, %;
Cg is the carbon content on the surface of the metal,
%; ¥x,t), Yx,t), P(x,t}, P(t), and Yy(t) are the func-
tions satisfying systems of equations (10)—(15), (16)—
(19); n=10, 1, ..., N are the numbers of the time in~
tervals; k is the iteration number.
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